DSDC

PARTNERS
in Quality Solutions

DSDC DLA'S Central Design Activity

INDUSTRY

Software Development

in

Government and Industry

Presented by: DSDC

For more info, send requests to: sepg@dsdc.dla.mil

Description and Objectives

INDUSTRY

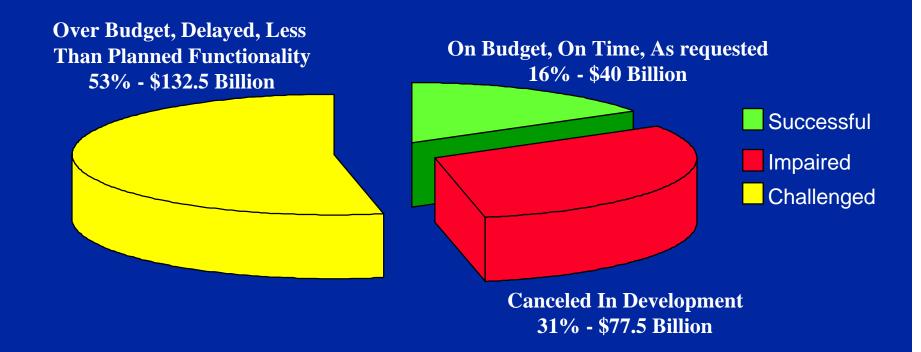
Description:

in Quality Solutions

This course provides an overview of what consumers of software need to know about the approaches that government and commercial industry software development organizations use to produce higher quality software within cost and schedule.

Objectives:

- 1. Identify the state of software development in the U.S. and discuss reasons that software projects succeed or fail
- 2. Review improvement models, including the concepts and terms of the Capability Maturity Model for Software and how it compares to ISO 9000
- 3. Discuss Systems Development from the perspective of each stakeholder role


in Quality Solutions

The CHAOS Study

INDUSTRY

CUSTOMER

Annual Expenditure for Software Development in the U.S. - \$250 Billion

Software Process Improvement (SPI) Why Do It?

- **√** Most business process improvements implemented via software
- **√** Improved process stability and capability
- **→** Greater predictability for size, cost, schedule, effort & documentation
- ✓ Increased quality in products and services.
- √ Reduced rework
- ✓ Decreased reliance on testing to ensure quality.
- **→** Minimized risk to software development investments
- **▼** Efficient project staff start-up time; faster project start-up
- **♦** Dynamic allocation of resources
- **√** Improved teamwork among stakeholders
- **√** Improved tool usage
- **→** Long term benefits from continuous SPI

DSDC

What is the Return on Investment?

PARTNERS in Quality Solutions

INDUSTRY

DD 0 UE OT /	PROJECT/		total	actual		p. cjcc.ca	#	range of pr	
PROJECT/ ARTIFACT	ARTIFACT SIZE	PHASE of	# lefects	cost TO FIX	rework s BY PI		jor ect	reworks s for MAJOR	avings DEFECTS*
Project A Rqmts Doc	1091 fp 21820 loc 137 pg SSS	requirements design coding unit/sys test accept test operation		3 13,814.82		1(D1	\$ 12,421.04 \$ 41,403.45 \$ 62,105.18 \$ 124,210.35	\$ 24,842.07 \$ 41,403.45 \$ 165,613.81
Project B Rqmts Doc	321 pg SSS	Requirements design coding unit/sys test accept test operation	192 \$	29,982.86	\$ 89,948.57 \$ 299,828.55 \$ 449,742.83	1 5 179,897.13 \$ 299,828.55 \$ 1,199,314.20 \$ 2,098,799.85 \$ 29,982,855.00	O \$5	46,848.21 \$	'
Project C Rqmts Doc	6 pg AWR	Requirements design coding unit/sys test accept test operation	27	\$ 5,606.2 ⁻		\$ 33,637.28 56,062.13 \$ 224,248.50 \$ 392,434.88 \$ 5,606,212.50	20	\$ 12,458.25 \$ 41,527.50 \$ 62,291.25 \$124,582.50 \$ 166,110.00	\$ 24,916.50 \$ 41,527.50 \$166,110.00 \$ 290,692.50 \$4,152750.00

^{*} Based on formulas reported in Barry W. Boehm's book,

Software Engineering Economics (Englewood Cliffs, N.J.: Prentice Hall, 1981).

Who Benefits?

INDUSTRY

END USERS

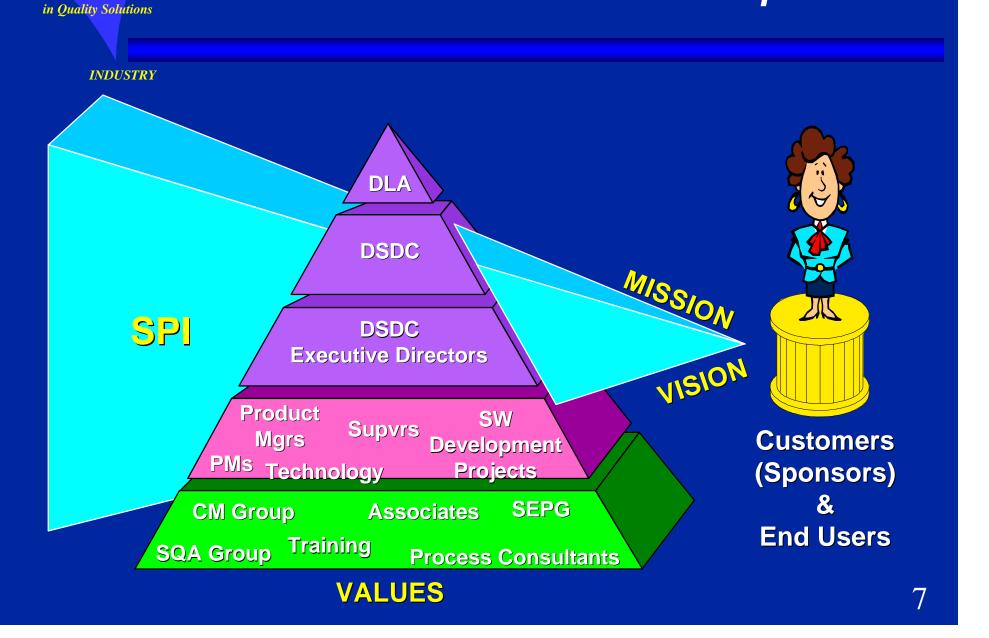
- **→** Higher quality products
- **√** Faster
- **♦** Desired functionality

CUSTOMERS (SPONSORS)

- **V** All above plus
- **V** Lower Risk Projects

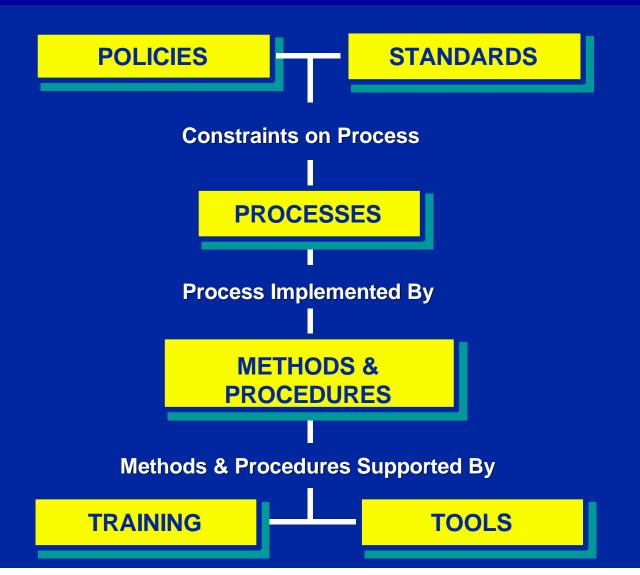
DSDC

- ↑ All above plus


DLA

- ✓ All above plus

DSDC


Who Needs to Take the Trip

DSDC

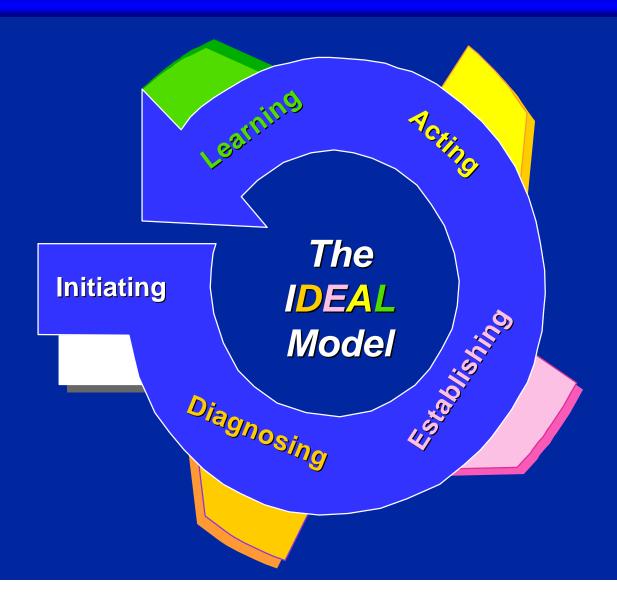
in Quality Solutions

The Operational Framework

DSDC

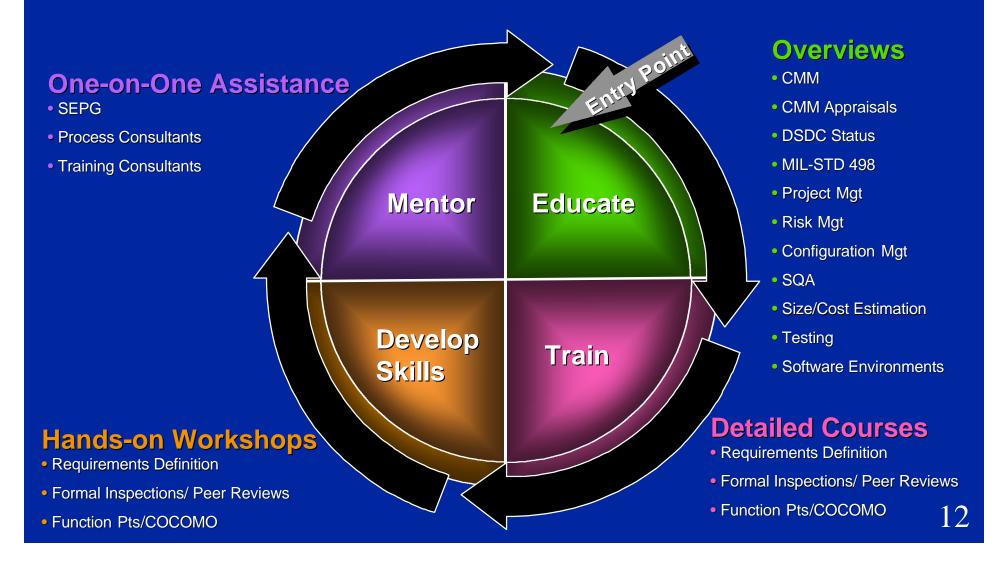
The Capability Maturity Model (CMM) for Software

LEVEL	KEY PROCESS AREAS	RESULT
OPTIMIZING 5	DEFECT PREVENTION TECHNOLOGY INNOVATION PROCESS CHG MGT	PRODUCTIVITY AND QUALITY
MANAGED 4	PROCESS MEASUREMENT AND ANALYSIS QUALITY MANAGEMENT	
DEFINED 3	ORGANIZATION PROCESS FOCUS ORGANIZATION PROCESS DEFINITION PEER REVIEWS TRAINING PROGRAM INTERGROUP COORDINATION SOFTWARE PRODUCT ENGINEERING INTEGRATED SOFTWARE MGT	
REPEATABLE 2	REQUIREMENTS MGT SOFTWARE PROJECT PLANNING SOFTWARE PROJECT TRACKING SOFTWARE SUBCONTRACT MGT SOFTWARE QUALITY ASSURANCE SOFTWARE CONFIGURATION MGT	DICK
INITIAL 1		RISK


Other Improvement Models

- √ ISO 9000
- √ ISO SPICE
- **√** Malcolm Baldridge
- **♦** Other CMMs
- **↑** The Microsoft Framework (MSF)

DSDC



The Improvement Life Cycle

PARTNERS in Quality Solutions

Implementing Improvements

DSDC

Assessing the Results

INDUSTRY

LEVEL

in Quality Solutions

2

MATURITY

Peer Reviews
Intergroup Coordination
Software Product Engineering
Integrated Software Management
Training Program
Organization Process Definition
Organization Process Focus

LEVEL

Strengths

- **√** Strong Senior Management Commitment to Process Improvement
- **√** SEPG is operating effectively
- **♦** Associates not afraid of hard work
- **√** Organization has strong technical capabilities
- **V** Organization is eager to improve
- **→** Organization committed to delivering quality products
- **♦** Organization knows and supports its systems and customers
- **↑** Organization understands that everyone (including customers) must take this journey together
- **▼ DSDC Project Guide is a very effective tool**
- **↑** Auditing has enhanced implementation of the process

PARTNERS in Quality Solutions

Recurring Themes

- **N** Resources are adequate for current workload but can easily become strained with downsizing and increased number of projects
- **→** Metrics are being collected but not used effectively to improve the process
- **Netrics** have not been defined for all level 3 KPAs and therefore there is limited management visibility
- **↑** Policies and procedures have not been fully defined for most level 3 KPAs
- **↑** Level 3 Institutionalization Common Features are not satisfied for most KPAs

Recommendations

- **Neview metrics program and how the metrics can be used more effectively to improve process and products**
- **↑** Review resource allocations based on changes in the organization and workloads
- **√** Address life cycle requirements traceability
- **√** Establish an organizational planning database
- √ Establish defect and lessons learned database
- **→** Improve definition of technical interfaces with subcontractors
- √ Acquire automated tool for configuration management
- **▼** Expand SQA audits to cover technical software products